Triazole-induced toxicity in developing rare minnow (Gobiocypris rarus) embryos

Using rare minnow (Gobiocypris rarus) at early-life stages as experimental models, the developmental toxicity of five widely used triazole fungicides (myclobutanil, fluconazole, flusilazole, triflumizole, and epoxiconazole) were investigated following exposure to 1–15 mg/L for 72 h. Meanwhile, morph...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science and pollution research international 2014-12, Vol.21 (23), p.13625-13635
Hauptverfasser: Zhu, Bin, Liu, Lei, Gong, Yu-Xin, Ling, Fei, Wang, Gao-Xue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Using rare minnow (Gobiocypris rarus) at early-life stages as experimental models, the developmental toxicity of five widely used triazole fungicides (myclobutanil, fluconazole, flusilazole, triflumizole, and epoxiconazole) were investigated following exposure to 1–15 mg/L for 72 h. Meanwhile, morphological parameters (body length, body weight, and heart rate), enzyme activities (superoxide dismutase (SOD), glutathione S-transferase (GST), adenosine triphosphatase (ATPase), and acetyl cholinesterase (AChE)), and mRNA levels (hsp70, mstn, mt, apaf1, vezf1, and cyp1a) were also recorded following exposure to 0.2, 1.0, and 5.0 mg/L for 72 h. Results indicated that increased malformation and mortality, decreased body length, body weight, and heart rate provide a concentration-dependent pattern; values of 72 h LC₅₀(median lethal concentration) and EC₅₀(median effective concentration) ranged from 3 to 12 mg/L. Most importantly, the results of the present study suggest that even at the lowest concentration, 0.2 mg/L, five triazole fungicides also caused notable changes in enzyme activities and mRNA levels. Overall, the present study points out that those five triazole fungicides are highly toxic to the early development of G. rarus embryos. The information presented in this study will be helpful in better understanding the toxicity induced by triazole fungicides in fish embryos.
ISSN:0944-1344
1614-7499
DOI:10.1007/s11356-014-3317-6