Thioltransferase (Glutaredoxin) Reactivates the DNA-binding Activity of Oxidation-inactivated Nuclear Factor I

The reversible oxidative inactivation of transcription factors has been proposed to be important in cellular responses to oxidant stress and in several signal transduction pathways. The nuclear factor I (NFI) family of transcription factors is sensitive to oxidative inactivation due to the presence...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 1998-01, Vol.273 (1), p.392-397
Hauptverfasser: Bandyopadhyay, Smarajit, Starke, David W., Mieyal, John J., Gronostajski, Richard M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The reversible oxidative inactivation of transcription factors has been proposed to be important in cellular responses to oxidant stress and in several signal transduction pathways. The nuclear factor I (NFI) family of transcription factors is sensitive to oxidative inactivation due to the presence of a conserved, oxidation-sensitive cysteine residue within the NFI DNA-binding domain. Here we show that restoration of the DNA-binding activity of oxidized NFI-C can be catalyzed in vitro by the cellular enzyme thioltransferase (glutaredoxin) coupled to GSH and GSSG reductase. To test whether GSH-dependent pathways play a role in the maintenance of NFI activity in vivo, we used buthionine sulfoximine, an agent that inhibits GSH synthesis, and N-acetylcysteine, an agent that can replenish intracellular GSH. Pretreatment of HeLa cells with buthionine sulfoximine greatly potentiated the inactivation of NFI by the oxidizing agent diamide. Inclusion of N-acetylcysteine in the culture medium during the recovery period following diamide treatment increased the extent of restoration of NFI activity. These results suggest that maintenance of the DNA-binding activity of NFI proteins during oxidant stress in vivo requires a GSH-dependent pathway, likely involving thioltransferase-catalyzed reduction of the oxidation-sensitive cysteine residue on NFI.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.273.1.392