Illite crystallinity and fluid inclusion analysis across a Paleozoic disconformity in Central Korea

Illite crystallinity and fluid inclusion techniques are used to understand the thermal histories of rocks on either side of the disconformity between the Lower and Upper Paleozoic strata in South Korea. Illite crystallinity studies show that the metamorphic grade of the upper strata of the Lower Pal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clays and clay minerals 1997-04, Vol.45 (2), p.147-157
Hauptverfasser: Lee, Yong Il, Ko, Hee Kyeong
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Illite crystallinity and fluid inclusion techniques are used to understand the thermal histories of rocks on either side of the disconformity between the Lower and Upper Paleozoic strata in South Korea. Illite crystallinity studies show that the metamorphic grade of the upper strata of the Lower Paleozoic Joseon Supergroup, platform carbonates with subordinate siliciclastics, belongs to the epizone and that of the lowermost strata of the Upper Paleozoic Pyeongan Supergroup, paralic to nonmarine clastics, belongs to the anchizone. The maximum mode of homogenization temperature for fluid inclusion of the uppermost strata of the Joseon Supergroup is 260 to 270 °C and that of the lowermost strata of the Pyeongan Supergroup is 240 to 250 °C. These data reveal a difference in thermal histories of strata below and above the unconformity, suggesting that, in contrast to the previous supposition of a period of non-deposition, at least a 1-km thick section of sediment was removed by erosion during development of the unconformity. Burial and heat flux from a proposed hot spot are suggested as the dominant factors causing differences in a metamorphic grade for the Joseon Supergroup before the deposition of the Upper Paleozoic strata.
ISSN:0009-8604
1552-8367
DOI:10.1346/CCMN.1997.0450203