Infinitely many positive solutions for nonlinear equations with non-symmetric potentials

We consider the following nonlinear Schrödinger equation Δ u - ( 1 + δ V ) u + f ( u ) = 0 in R N , u > 0 in R N , u ∈ H 1 ( R N ) where V is a continuous potential and f ( u ) is a nonlinearity satisfying some decay condition and some non-degeneracy condition, respectively. Using localized energ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Calculus of variations and partial differential equations 2014-11, Vol.51 (3-4), p.761-798
Hauptverfasser: Ao, Weiwei, Wei, Juncheng
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the following nonlinear Schrödinger equation Δ u - ( 1 + δ V ) u + f ( u ) = 0 in R N , u > 0 in R N , u ∈ H 1 ( R N ) where V is a continuous potential and f ( u ) is a nonlinearity satisfying some decay condition and some non-degeneracy condition, respectively. Using localized energy method, we prove that there exists a δ 0 such that for 0 < δ < δ 0 , the above problem has infinitely many positive solutions. This generalizes and gives a new proof of the results by Cerami et al. (Comm. Pure Appl. Math. 66, 372–413, 2013 ). The new techniques allow us to establish the existence of infinitely many positive bound states for elliptic systems.
ISSN:0944-2669
1432-0835
DOI:10.1007/s00526-013-0694-5