Magnetic domain patterns on strong perpendicular magnetization of Co/Ni multilayers as spintronics materials: I. Dynamic observations
Materials with perpendicular magnetic anisotropy can reduce the threshold current density of the current-induced domain wall motion. Co/Ni multilayers show strong perpendicular magnetic anisotropy and therefore it has become a highly potential candidate of current-induced domain wall motion memories...
Gespeichert in:
Veröffentlicht in: | Journal of physics. Condensed matter 2013-10, Vol.25 (40), p.406001-406001 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Materials with perpendicular magnetic anisotropy can reduce the threshold current density of the current-induced domain wall motion. Co/Ni multilayers show strong perpendicular magnetic anisotropy and therefore it has become a highly potential candidate of current-induced domain wall motion memories. However, the details of the mechanism which stabilizes the strong perpendicular magnetization in Co/Ni multilayers have not yet been understood. In the present work, the evolution of the magnetic domain structure of multilayers consisting of pairs of 2 or 3 monolayers (ML) of Ni and 1 ML of Co on W(110) was investigated during growth with spin-polarized low-energy electron microscopy. An interesting phenomenon, that the magnetic domain structure changed drastically during growth, was revealed. In the early stages of the growth the magnetization alternated between in-plane upon Co deposition and out-of-plane upon Ni deposition. The change of the magnetization direction occurred within a range of less than 0.2 ML during Ni or Co deposition, with break-up of the existing domains followed by growth of new domains. The Ni and Co thickness at which the magnetization direction switched shifted gradually with the number of Co/Ni pairs. Above 3-4 Co/Ni pairs it stayed out-of-plane. The results indicate clearly that the Co-Ni interfaces play the important role of enhancing the perpendicular magnetic anisotropy. |
---|---|
ISSN: | 0953-8984 1361-648X |
DOI: | 10.1088/0953-8984/25/40/406001 |