MINRES Seed Projection Methods for Solving Symmetric Linear Systems with Multiple Right-Hand Sides

We consider the MINRES seed projection method for solving multiple right-hand side linear systems A X = B , where A ∈ R n × n is a nonsingular symmetric matrix, B ∈ R n × p . In general, GMRES seed projection method is one of the effective methods for solving multiple right-hand side linear systems....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical problems in engineering 2014-01, Vol.2014 (1)
Hauptverfasser: Li, Xin, Liu, Hao, Zhu, Jingfu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the MINRES seed projection method for solving multiple right-hand side linear systems A X = B , where A ∈ R n × n is a nonsingular symmetric matrix, B ∈ R n × p . In general, GMRES seed projection method is one of the effective methods for solving multiple right-hand side linear systems. However, when the coefficient matrix is symmetric, the efficiency of this method would be weak. MINRES seed projection method for solving symmetric systems with multiple right-hand sides is proposed in this paper, and the residual estimation is analyzed. The numerical examples show the efficiency of this method.
ISSN:1024-123X
1563-5147
DOI:10.1155/2014/357874