Two difference schemes for the numerical solution of Maxwell’s equations as applied to extremely and super low frequency signal propagation in the Earth-ionosphere waveguide
Two explicit two-time-level difference schemes for the numerical solution of Maxwell’s equations are proposed to simulate propagation of small-amplitude extremely and super low frequency electromagnetic signals (200 Hz and lower) in the Earth-ionosphere waveguide with allowance for the tensor conduc...
Gespeichert in:
Veröffentlicht in: | Computational mathematics and mathematical physics 2014-10, Vol.54 (10), p.1597-1617 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Two explicit two-time-level difference schemes for the numerical solution of Maxwell’s equations are proposed to simulate propagation of small-amplitude extremely and super low frequency electromagnetic signals (200 Hz and lower) in the Earth-ionosphere waveguide with allowance for the tensor conductivity of the ionosphere. Both schemes rely on a new approach to time approximation, specifically, on Maxwell’s equations represented in integral form with respect to time. The spatial derivatives in both schemes are approximated to fourth-order accuracy. The first scheme uses field equations and is second-order accurate in time. The second scheme uses potential equations and is fourth-order accurate in time. Comparative test computations show that the schemes have a number of important advantages over those based on finite-difference approximations of time derivatives. Additionally, the potential scheme is shown to possess better properties than the field scheme. |
---|---|
ISSN: | 0965-5425 1555-6662 |
DOI: | 10.1134/S0965542514100030 |