Semiblind Image Deconvolution with Spatially Adaptive Total Variation Regularization
A semiblind image deconvolution algorithm with spatially adaptive total variation (SATV) regularization is introduced. The spatial information in different image regions is incorporated into regularization by using the edge indicator called difference eigenvalue to distinguish flat areas from edges....
Gespeichert in:
Veröffentlicht in: | Mathematical problems in engineering 2014-01, Vol.2014 (2014), p.1-8 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A semiblind image deconvolution algorithm with spatially adaptive total variation (SATV) regularization is introduced. The spatial information in different image regions is incorporated into regularization by using the edge indicator called difference eigenvalue to distinguish flat areas from edges. Meanwhile, the split Bregman method is used to optimize the proposed SATV model. The proposed algorithm integrates the spatial constraint and parametric blur-kernel and thus effectively reduces the noise in flat regions and preserves the edge information. Comparative results on simulated images and real passive millimeter-wave (PMMW) images are reported. |
---|---|
ISSN: | 1024-123X 1563-5147 |
DOI: | 10.1155/2014/606170 |