On a High Dimensional Riemann's Removability Theorem

Let M be a (connected) complex manifold and E be a closed capacity zero set. Let X be a (connected) complex compact Kobayashi hyperbolic space whose universal covering space is Stein and let f be a holomorphic map of M - E to X. Then f can be extended holomorphically to a map of M to X.

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of mathematics research 2014-09, Vol.6 (3), p.8-8
1. Verfasser: Adachi, Yukinobu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let M be a (connected) complex manifold and E be a closed capacity zero set. Let X be a (connected) complex compact Kobayashi hyperbolic space whose universal covering space is Stein and let f be a holomorphic map of M - E to X. Then f can be extended holomorphically to a map of M to X.
ISSN:1916-9795
1916-9809
DOI:10.5539/jmr.v6n3p8