On a High Dimensional Riemann's Removability Theorem
Let M be a (connected) complex manifold and E be a closed capacity zero set. Let X be a (connected) complex compact Kobayashi hyperbolic space whose universal covering space is Stein and let f be a holomorphic map of M - E to X. Then f can be extended holomorphically to a map of M to X.
Gespeichert in:
Veröffentlicht in: | Journal of mathematics research 2014-09, Vol.6 (3), p.8-8 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let M be a (connected) complex manifold and E be a closed capacity zero set. Let X be a (connected) complex compact Kobayashi hyperbolic space whose universal covering space is Stein and let f be a holomorphic map of M - E to X. Then f can be extended holomorphically to a map of M to X. |
---|---|
ISSN: | 1916-9795 1916-9809 |
DOI: | 10.5539/jmr.v6n3p8 |