Video Compressive Sensing Using Gaussian Mixture Models

A Gaussian mixture model (GMM)-based algorithm is proposed for video reconstruction from temporally compressed video measurements. The GMM is used to model spatio-temporal video patches, and the reconstruction can be efficiently computed based on analytic expressions. The GMM-based inversion method...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing 2014-11, Vol.23 (11), p.4863-4878
Hauptverfasser: Yang, Jianbo, Yuan, Xin, Liao, Xuejun, Llull, Patrick, Brady, David J., Sapiro, Guillermo, Carin, Lawrence
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A Gaussian mixture model (GMM)-based algorithm is proposed for video reconstruction from temporally compressed video measurements. The GMM is used to model spatio-temporal video patches, and the reconstruction can be efficiently computed based on analytic expressions. The GMM-based inversion method benefits from online adaptive learning and parallel computation. We demonstrate the efficacy of the proposed inversion method with videos reconstructed from simulated compressive video measurements, and from a real compressive video camera. We also use the GMM as a tool to investigate adaptive video compressive sensing, i.e., adaptive rate of temporal compression.
ISSN:1057-7149
1941-0042
DOI:10.1109/TIP.2014.2344294