Dielectric relaxations of poly(N-isopropylacrylamide) microgels near the volume phase transition temperature: impact of cross-linking density distribution on the volume phase transition
Dielectric relaxation behaviors of three types of thermally sensitive poly(N-isopropylacrylamide) (PNIPAM) microgels with different cross-linking density distributions were investigated in a frequency range from 40 Hz to 110 MHz at temperatures from 15 °C to 55 °C. After eliminating the electrode po...
Gespeichert in:
Veröffentlicht in: | Soft matter 2014-11, Vol.10 (43), p.8711-8723 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Dielectric relaxation behaviors of three types of thermally sensitive poly(N-isopropylacrylamide) (PNIPAM) microgels with different cross-linking density distributions were investigated in a frequency range from 40 Hz to 110 MHz at temperatures from 15 °C to 55 °C. After eliminating the electrode polarization at low frequency, two remarkable relaxations were observed, one in the kHz frequency range and the other in the MHz range. The low-frequency relaxation is attributed to the counterion polarization in the whole measuring temperature range, while the relaxation at high-frequency is probably dominated by different polarization mechanisms depending on below or above the volume phase transition temperature (VPTT): it is considered as micro-Brownian motion of side groups of PNIPAM when T < VPTT and interfacial polarization when T > VPTT. The temperature dependence of the dielectric parameters for both the relaxations presents an abrupt change around 32.5 °C, indicating the occurrence of phase transition. Based on the analysis and discussion about the micro-Brownian motion of the side groups, a possible microstructure for the microgels before and after the collapse of PNIPAM was suggested. A dielectric model to describe the collapsing microgel suspension was proposed, from which the electrical and structural parameters of the suspension were calculated. The information on the internal structure and hydration dynamic behavior of microgels was obtained by using the thermodynamic parameters which were calculated based on the Eyring equation. Our results reveal that the spatial distribution of the cross-linking density distribution has almost no effect on the volume phase transition temperature, but markedly affects the swelling capacity of PNIPAM microgels at low temperatures. |
---|---|
ISSN: | 1744-683X 1744-6848 |
DOI: | 10.1039/c4sm01516a |