FIELD TEST VALIDATION OF ANALYTICAL MODEL FOR VIBRATION CHARACTERISTICS OF A FLAP GATE UNDERGOING SELF-EXCITED VIBRATION
An experimental modal analysis, using an impact hammer and accelerometers, was conducted on a full-scale flap gate with a height of 0.963 m and a span of 14.8 m to determine its in-air natural frequencies, mode shapes, and modal damping. Subsequently, the in-water self-excited vibration characterist...
Gespeichert in:
Veröffentlicht in: | International Journal of Mechanical Engineering and Robotics Research 2014-10, Vol.3 (4), p.1-1 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An experimental modal analysis, using an impact hammer and accelerometers, was conducted on a full-scale flap gate with a height of 0.963 m and a span of 14.8 m to determine its in-air natural frequencies, mode shapes, and modal damping. Subsequently, the in-water self-excited vibration characteristics of the gate (without any spoilers) were recorded using the same accelerometers. The major in-air vibration characteristics (the mode shape, frequency and damping ratio for the damped vibrations), as well as the major in-water self-excited vibration characteristics (the excitation ratio and frequency of the self-excited vibrations in-water) are tabulated. In parallel with these experiments, calculations of the inherent in-water vibration frequency of the gate using a potential flow theory, based on input from the in-air modal testing, are presented. Comparison of the calculated inherent in-water vibration frequency with the measured frequency of the in-water self-excited vibration confirms the validity of the present theoretical analysis. |
---|---|
ISSN: | 2278-0149 |