Estrogen, but not progesterone, induces the activity of nitric oxide synthase within the medial preoptic area in female rats

Abstract The control of gonadotropin-releasing hormone (GnRH) secretion depends on the action of ovarian steroids and several substances, including nitric oxide (NO). NO in the medial preoptic area (MPOA) stimulates the proestrus surge of luteinizing hormone (LH). We studied the effect of estrogen (...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Brain research 2014-08, Vol.1578, p.23-29
Hauptverfasser: Lima, Fernanda Barbosa, Ota, Fábio Honda, Cabral, Fernanda Jankur, Bianco Borges, Bruno Del, Franci, Celso Rodrigues
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Abstract The control of gonadotropin-releasing hormone (GnRH) secretion depends on the action of ovarian steroids and several substances, including nitric oxide (NO). NO in the medial preoptic area (MPOA) stimulates the proestrus surge of luteinizing hormone (LH). We studied the effect of estrogen (Tamoxifen-TMX) and progesterone (RU-486) antagonists on mRNA and protein expression of NO synthase (NOS), the enzyme that produces NO, as well as its activity within MPOA. Female rats received s.c. injections of TMX (3 mg/animal) on first and second days of the estrous cycle (9 am), RU-486 (2 mg/animal) on first, second, (8 am and 5 pm) and third days of the estrous cycle (8 am) or oil (controls) and were killed on the third day (5 pm). Real time-PCR and western blotting were performed to study NOS mRNA and protein expressions. The NOS activity was indirectly assessed by measuring the conversion from [14 C]- l -arginine into [14 C]- l -citrulline. TMX significantly decreased neuronal NOS (nNOS) mRNA expression (90%), and the activity of NOS, but did not alter nNOS protein expression. Also, TMX significantly decreased LH, FSH, estrogen and progesterone plasma levels. RU-486 nor affected NOS mRNA and protein expressions neither the NOS activity in the MPOA, but reduced FSH levels. The nitrergic system in the MPOA can be stimulated by estrogen whereas TMX decreased NOS activity and mRNA expression. In conclusion, the involvement of the nitrergic system in the MPOA to induce the surge of LH on proestrus depends on the estrogen action to stimulate the mRNA-nNOS expression and the activity of nNOS but it does not seem to depend on progesterone action.
ISSN:0006-8993
1872-6240
DOI:10.1016/j.brainres.2014.07.003