EFFICIENT METHOD OF MOMENTS ESTIMATORS FOR INTEGER TIME SERIES MODELS

The parameters of integer autoregressive models with Poisson, or negative binomial innovations can be estimated by maximum likelihood where the prediction error decomposition, together with convolution methods, is used to write down the likelihood function. When a moving average component is introdu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of time series analysis 2014-11, Vol.35 (6), p.491-516
Hauptverfasser: Martin, Vance L., Tremayne, Andrew R., Jung, Robert C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The parameters of integer autoregressive models with Poisson, or negative binomial innovations can be estimated by maximum likelihood where the prediction error decomposition, together with convolution methods, is used to write down the likelihood function. When a moving average component is introduced this is not the case. To address this problem an efficient method of moment estimator is proposed where the estimated standard errors for the parameters are obtained using subsampling methods. The small sample properties of the estimator are investigated using Monte Carlo methods, while the approach is demonstrated using two well‐known examples from the time series literature.
ISSN:0143-9782
1467-9892
DOI:10.1111/jtsa.12078