How Predictable Are Equity Covariance Matrices? Evidence from High-Frequency Data for Four Markets
ABSTRACTMost pricing and hedging models rely on the long‐run temporal stability of a sample covariance matrix. Using a large dataset of equity prices from four countries—the USA, UK, Japan and Germany—we test the stability of realized sample covariance matrices using two complementary approaches: a...
Gespeichert in:
Veröffentlicht in: | Journal of forecasting 2014-11, Vol.33 (7), p.542-557 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | ABSTRACTMost pricing and hedging models rely on the long‐run temporal stability of a sample covariance matrix. Using a large dataset of equity prices from four countries—the USA, UK, Japan and Germany—we test the stability of realized sample covariance matrices using two complementary approaches: a standard covariance equality test and a novel matrix loss function approach. Our results present a pessimistic outlook for equilibrium models that require the covariance of assets returns to mean revert in the long run. We find that, while a daily first‐order Wishart autoregression is the best covariance matrix‐generating candidate, this non‐mean‐reverting process cannot capture all of the time series variation in the covariance‐generating process. Copyright © 2014 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0277-6693 1099-131X |
DOI: | 10.1002/for.2310 |