How Predictable Are Equity Covariance Matrices? Evidence from High-Frequency Data for Four Markets

ABSTRACTMost pricing and hedging models rely on the long‐run temporal stability of a sample covariance matrix. Using a large dataset of equity prices from four countries—the USA, UK, Japan and Germany—we test the stability of realized sample covariance matrices using two complementary approaches: a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of forecasting 2014-11, Vol.33 (7), p.542-557
Hauptverfasser: Buckle, Mike, Chen, Jing, Williams, Julian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:ABSTRACTMost pricing and hedging models rely on the long‐run temporal stability of a sample covariance matrix. Using a large dataset of equity prices from four countries—the USA, UK, Japan and Germany—we test the stability of realized sample covariance matrices using two complementary approaches: a standard covariance equality test and a novel matrix loss function approach. Our results present a pessimistic outlook for equilibrium models that require the covariance of assets returns to mean revert in the long run. We find that, while a daily first‐order Wishart autoregression is the best covariance matrix‐generating candidate, this non‐mean‐reverting process cannot capture all of the time series variation in the covariance‐generating process. Copyright © 2014 John Wiley & Sons, Ltd.
ISSN:0277-6693
1099-131X
DOI:10.1002/for.2310