Micropiping processes and biancana evolution in southeast Tuscany, Italy
Biancane badlands consisting of small domes dissected by rills and micropipes, with rough disordered microrehef, can be found along the Apennines in Italy. The dominant processes forming biancane differ from those of badlands formed on smectite-rich mudrocks, as micropipes associated with pseudokars...
Gespeichert in:
Veröffentlicht in: | Geomorphology (Amsterdam, Netherlands) Netherlands), 1997-10, Vol.20 (3-4), p.219-235 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Biancane badlands consisting of small domes dissected by rills and micropipes, with rough disordered microrehef, can be found along the Apennines in Italy. The dominant processes forming biancane differ from those of badlands formed on smectite-rich mudrocks, as micropipes associated with pseudokarstic enlargement of pores and cracks predominate and form the main routes for evacuation of eroded material.
Biancana evolution is controlled by water infiltration into intact bedrock, producing an erodible weathering ‘rind’ which is more porous than intact rock. This rind is easily removed by rill or micropipe flow, and erosion is therefore ‘weathering-controlled’, depending on rind production by infiltrating water. Infiltration is initially slow and stepped, due to slow water movement through very small capillary pores in intact rock alternating with rapid filling of macropores and cracks. This occurs due to rapid matrix pore enlargement by dispersion and/or dissolution. The infiltration pattern is accurately reproduced by a model built on progressive development of weathering layers by moisture penetration. Model results are consistent with weathering rind depths and erosion observed in the field, and show that a pipe network can be generated on newly exposed rock by the rainfall of one year.
Propagation of the pipe network diverts a progressively larger proportion of runoff into micropipes, expanding weathering rind production within the biancana as well as on the surface. Internal weathering and flow progressively dominate with few unweathered corestones, and the biancana gradually collapses into a penultimate “soufflé-like” form. |
---|---|
ISSN: | 0169-555X 1872-695X |
DOI: | 10.1016/S0169-555X(97)00025-1 |