Rotundarpene prevents TRAIL-induced apoptosis in human keratinocytes by suppressing the caspase-8- and Bid-pathways and the mitochondrial pathway
The extract and hemiterpene glycosides of Ilex rotunda Thunb have demonstrated antioxidant and anti-inflammatory effects. Nevertheless, the effect of rotundarpene on the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in keratinocytes that may be involved in skin di...
Gespeichert in:
Veröffentlicht in: | Naunyn-Schmiedeberg's archives of pharmacology 2014-12, Vol.387 (12), p.1209-1219 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The extract and hemiterpene glycosides of
Ilex rotunda
Thunb have demonstrated antioxidant and anti-inflammatory effects. Nevertheless, the effect of rotundarpene on the tumor necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis in keratinocytes that may be involved in skin diseases has not been studied. In this respect, we investigated the effect of rotundarpene on TRAIL-induced apoptosis in human keratinocytes. TRAIL triggers apoptosis by inducing a decrease in the cytosolic levels of Bid, Bcl-2, Bcl-xL, and survivin proteins, increase in the cytosolic levels of Bax, and increase in the mitochondrial levels of VDAC1, loss of the mitochondrial transmembrane potential, release of cytochrome
c
, activation of caspases (-8, -9, and -3), cleavage of PARP-1, and an increase in the tumor suppressor p53 levels. Treatment with rotundarpene prevented TRAIL-induced changes in the levels of apoptosis-related proteins, formations of reactive oxygen species and nitric oxide, nuclear damage, and cell death. These results suggest that rotundarpene may reduce TRAIL-induced apoptosis in human keratinocytes by suppressing the activation of the caspase-8- and Bid-pathways and the mitochondria-mediated cell death pathway, which is associated with the formation of reactive oxygen species and reactive nitrogen species. These data suggest that rotundarpene appears to be effective in the prevention of TRAIL-induced apoptosis-mediated skin diseases. |
---|---|
ISSN: | 0028-1298 1432-1912 |
DOI: | 10.1007/s00210-014-1051-8 |