Magneto-optical Goos-Hänchen effect in a prism-waveguide coupling structure

We report a theoretical study of the enhanced Goos-Hänchen (GH) effect in a prism-waveguide coupling system with a magneto-optic thin film of Ce doped Y(3)Fe(5)O(12) (CeYIG). By magnetizing the CeYIG thin film along different directions, a variation of the GH shift can be observed, which is named as...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Optics express 2014-11, Vol.22 (22), p.27042-27055
Hauptverfasser: Tang, Tingting, Qin, Jun, Xie, Jianliang, Deng, Longjiang, Bi, Lei
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We report a theoretical study of the enhanced Goos-Hänchen (GH) effect in a prism-waveguide coupling system with a magneto-optic thin film of Ce doped Y(3)Fe(5)O(12) (CeYIG). By magnetizing the CeYIG thin film along different directions, a variation of the GH shift can be observed, which is named as the MOGH (magneto-optical Goos-Hänchen) effect. The applied magnetic field direction is found to cause MOGH effect for light with different polarizations. As example systems, enhanced GH shift and MOGH effect is observed in both prism/Air/CeYIG/SiO(2) and prism/Au/CeYIG/SiO(2) structures, by applying opposite magnetic field across the CeYIG layer in a transverse magneto-optical Kerr effect (TMOKE) configuration. The GH and MOGH effect as a function of layer thicknesses, material refractive indices and magneto-optical properties are systematically simulated and discussed. It is observed that the coupling layer and MO layer thickness plays an important role of controlling the MOGH effect in the prism/Au/CeYIG/SiO(2) plasmonic waveguide structure. The MOGH effect shows high sensitivity to applied magnetic field and index variations, making it promising for applications such as optical switches, modulators, and chemical or biomedical index sensors.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.22.027042