Metformin, cancer and glucose metabolism
Metformin is the first-line treatment for type 2 diabetes. Results from several clinical studies have indicated that type 2 diabetic patients treated with metformin might have a lower cancer risk. One of the primary metabolic changes observed in malignant cell transformation is an increased cataboli...
Gespeichert in:
Veröffentlicht in: | Endocrine-related cancer 2014-12, Vol.21 (6), p.R461-R471 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Metformin is the first-line treatment for type 2 diabetes. Results from several clinical studies have indicated that type 2 diabetic patients treated with metformin might have a lower cancer risk. One of the primary metabolic changes observed in malignant cell transformation is an increased catabolic glucose metabolism. In this context, once it has entered the cell through organic cation transporters, metformin decreases mitochondrial respiration chain activity and ATP production that, in turn, activates AMP-activated protein kinase, which regulates energy homeostasis. In addition, metformin reduces cellular energy availability and glucose entrapment by inhibiting hexokinase-II, which catalyses the glucose phosphorylation reaction. In this review, we discuss recent findings on molecular mechanisms that sustain the anticancer effect of metformin through regulation of glucose metabolism. In particular, we have focused on the emerging action of metformin on glycolysis in normal and cancer cells, with a drug discovery perspective. |
---|---|
ISSN: | 1351-0088 1479-6821 |
DOI: | 10.1530/ERC-14-0284 |