Time-to-Detect Trends in Precipitable Water Vapor with Varying Measurement Error

This study determined the theoretical time-to-detect (TTD) global climate model (GCM) precipitable water vapor (PWV) 100-yr trends when realistic measurement errors are considered. Global trends ranged from 0.055 to 0.072 mm yr−1and varied minimally from season to season. Global TTDs with a 0% measu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of climate 2014-11, Vol.27 (21), p.8259-8275
Hauptverfasser: Roman, Jacola, Knuteson, Robert, Ackerman, Steve
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study determined the theoretical time-to-detect (TTD) global climate model (GCM) precipitable water vapor (PWV) 100-yr trends when realistic measurement errors are considered. Global trends ranged from 0.055 to 0.072 mm yr−1and varied minimally from season to season. Global TTDs with a 0% measurement error ranged from 3.0 to 4.8 yr, while a 5% measurement error increased the TTD by almost 6 times, ranging from 17.6 to 22.0 yr. Zonal trends were highest near the equator; however, zonal TTDs were nearly independent of latitude when 5% measurement error was included. Zonal TTDs are significantly reduced when the trends are analyzed by season. Regional trends (15° × 30°) show TTDs close to those in the 15° latitude zones (15° × 360°). Detailed case study analysis of four selected regions with high population density—eastern United States, Europe, China, and India—indicated that trend analysis on regional spatial scales may provide the most timely information regarding highly populated regions when comparing detection time scales to global and zonal analyses.
ISSN:0894-8755
1520-0442
DOI:10.1175/JCLI-D-13-00736.1