Microbial selenium volatilization in rhizosphere and bulk soils from a constructed wetland

The potential of rhizosphere and bulk soil microbes to volatilize selenate, selenite, and selenomethionine was studied in liquid cultures under controlled conditions. Microbes cultured from the rhizosphere of bulrush (Scirpus robustus) plants showed higher Se volatilization than those from bulk soil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of environmental quality 1997-05, Vol.26 (3), p.666-672
Hauptverfasser: Azaizeh, H.A. (Galilee Regional Research and Development Center, Eilabun, Israel.), Gowthaman, S, Terry, N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The potential of rhizosphere and bulk soil microbes to volatilize selenate, selenite, and selenomethionine was studied in liquid cultures under controlled conditions. Microbes cultured from the rhizosphere of bulrush (Scirpus robustus) plants showed higher Se volatilization than those from bulk soil of a flow-through, constructed wetland area contaminated with selenite. The data show that bacteria are the dominant microbes involved in Se volatilization; fungi contribute relatively little to this process. Bactericides significantly decreased both Se volatilization and the number of culturable bacteria in rhizosphere cultures compared to an untreated control. In the absence of added C, Se volatilization was greatest from selenomethionine, then selenite, then selenate. Aeration substantially increased the percentages of Se volatilized from rhizosphere soil cultures to which no C was added. Up to 95, 21, and 3% of the Se was volatilized from selenomethionine, selenite, and selenate, respectively. When both C and aeration treatments were applied to the rhizosphere cultures, the corresponding percentages changed to 20, 57, and 4%, that is, selenomethionine volatilization by rhizosphere microbes decreased when C was added while selenite volatilization substantially increased. Since selenite volatilization was the greatest when rhizosphere microbes were supplied with C and aeration, we suggest that microbes in this selenite-contaminated wetland are adapted to volatilize Se by using C released from roots, and that Se volatilization may be enhanced by oxygen and environmental conditions provided by the plants
ISSN:0047-2425
1537-2537
DOI:10.2134/jeq1997.00472425002600030011x