Efficient Variable Step Size Approximations for Strong Solutions of Stochastic Differential Equations with Additive Noise and Time Singularity
We consider stochastic differential equations with additive noise and conditions on the coefficients in those equations that allow a time singularity in the drift coefficient. Given a maximum step size, h*, we specify variable (adaptive) step sizes relative to h* which decrease as the time node poin...
Gespeichert in:
Veröffentlicht in: | International Journal of Stochastic Analysis 2014, Vol.2014 (2014), p.201-206 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider stochastic differential equations with additive noise and conditions on the coefficients in those equations that allow a time singularity in the drift coefficient. Given a maximum step size, h*, we specify variable (adaptive) step sizes relative to h* which decrease as the time node points approach the singularity. We use an Euler-type numerical scheme to produce an approximate solution and estimate the error in the approximation. When the solution is restricted to a fixed closed time interval excluding the singularity, we obtain a global pointwise error of order Oh*. An order of error Oh*p for any p |
---|---|
ISSN: | 2090-3332 2090-3340 |
DOI: | 10.1155/2014/852962 |