The Unit Distance Problem for Centrally Symmetric Convex Polygons

Let f(n) be the maximum number of unit distances determined by the vertices of a convex n -gon. Erdos and Moser conjectured that this function is linear. Supporting this conjecture we prove that fsym(n) $\sim$ 2n where fsym(n) is the restriction of f(n) to centrally symmetric convex n -gons. We also...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Discrete & computational geometry 2002-11, Vol.28 (4), p.467-473
Hauptverfasser: Abrego, Abrego, Fernandez-Merchant, Fernandez-Merchant
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let f(n) be the maximum number of unit distances determined by the vertices of a convex n -gon. Erdos and Moser conjectured that this function is linear. Supporting this conjecture we prove that fsym(n) $\sim$ 2n where fsym(n) is the restriction of f(n) to centrally symmetric convex n -gons. We also present two applications of this result. Given a strictly convex domain K with smooth boundary, if fK(n) denotes the maximum number of unit segments spanned by n points in the boundary of K , then fK(n)=O(n) whenever K is centrally symmetric or has width >1 . [PUBLICATION ABSTRACT]
ISSN:0179-5376
1432-0444
DOI:10.1007/s00454-002-2882-5