The Unit Distance Problem for Centrally Symmetric Convex Polygons
Let f(n) be the maximum number of unit distances determined by the vertices of a convex n -gon. Erdos and Moser conjectured that this function is linear. Supporting this conjecture we prove that fsym(n) $\sim$ 2n where fsym(n) is the restriction of f(n) to centrally symmetric convex n -gons. We also...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2002-11, Vol.28 (4), p.467-473 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let f(n) be the maximum number of unit distances determined by the vertices of a convex n -gon. Erdos and Moser conjectured that this function is linear. Supporting this conjecture we prove that fsym(n) $\sim$ 2n where fsym(n) is the restriction of f(n) to centrally symmetric convex n -gons. We also present two applications of this result. Given a strictly convex domain K with smooth boundary, if fK(n) denotes the maximum number of unit segments spanned by n points in the boundary of K , then fK(n)=O(n) whenever K is centrally symmetric or has width >1 . [PUBLICATION ABSTRACT] |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-002-2882-5 |