Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network

Natural and chaotic time series are predicted using an artificial neural network (ANN) based on particle swarm optimization (PSO). Firstly, the hybrid ANN+PSO algorithm is applied on Mackey-Glass series in the short-term prediction x(t + 6), using the current value x(t) and the past values: x(t - 6)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chinese physics letters 2011-11, Vol.28 (11), p.110504-1-110504-3
1. Verfasser: Lazzus, Juan A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Natural and chaotic time series are predicted using an artificial neural network (ANN) based on particle swarm optimization (PSO). Firstly, the hybrid ANN+PSO algorithm is applied on Mackey-Glass series in the short-term prediction x(t + 6), using the current value x(t) and the past values: x(t - 6), x(t - 12), x(t - 18). Then, this method is applied on solar radiation data using the values of the past years: x(t - 1), . . . , x(t- 4). The results show that the ANN+PSO method is a very powerful tool for making predictions of natural and chaotic time series.
ISSN:0256-307X
1741-3540
DOI:10.1088/0256-307X/28/11/110504