Predicting Natural and Chaotic Time Series with a Swarm-Optimized Neural Network
Natural and chaotic time series are predicted using an artificial neural network (ANN) based on particle swarm optimization (PSO). Firstly, the hybrid ANN+PSO algorithm is applied on Mackey-Glass series in the short-term prediction x(t + 6), using the current value x(t) and the past values: x(t - 6)...
Gespeichert in:
Veröffentlicht in: | Chinese physics letters 2011-11, Vol.28 (11), p.110504-1-110504-3 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Natural and chaotic time series are predicted using an artificial neural network (ANN) based on particle swarm optimization (PSO). Firstly, the hybrid ANN+PSO algorithm is applied on Mackey-Glass series in the short-term prediction x(t + 6), using the current value x(t) and the past values: x(t - 6), x(t - 12), x(t - 18). Then, this method is applied on solar radiation data using the values of the past years: x(t - 1), . . . , x(t- 4). The results show that the ANN+PSO method is a very powerful tool for making predictions of natural and chaotic time series. |
---|---|
ISSN: | 0256-307X 1741-3540 |
DOI: | 10.1088/0256-307X/28/11/110504 |