Propagation-inside-layer-expansion method combined with physical optics for scattering by coated cylinders, a rough layer, and an object below a rough surface

In this article, the fields scattered by coated cylinders, a rough layer, and an object below a rough surface are computed by the efficient propagation-inside-layer-expansion (PILE) method combined with the physical optics (PO) approximation to accelerate the calculation of the local interactions on...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Optical Society of America. A, Optics, image science, and vision Optics, image science, and vision, 2013-09, Vol.30 (9), p.1727-1737
Hauptverfasser: Bourlier, Christophe, Pinel, Nicolas, Kubické, Gildas
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, the fields scattered by coated cylinders, a rough layer, and an object below a rough surface are computed by the efficient propagation-inside-layer-expansion (PILE) method combined with the physical optics (PO) approximation to accelerate the calculation of the local interactions on the non-illuminated scatterer, which is assumed to be perfectly conducting. The PILE method is based on the method of moments, and the impedance matrix of the two scatterers is then inverted by blocks from a Taylor series expansion of the inverse of the Schur complement. Its main interest is that it is rigorous, with a simple formulation and a straightforward physical interpretation. In addition, one of the advantages of PILE is to be able to hybridize methods (rigorous or asymptotic) valid for a single scatterer. Then, in high frequencies, the hybridization with PO allows us to significantly reduce the complexity in comparison to a direct lower-upper inversion of the impedance matrix of the two scatterers without loss in accuracy.
ISSN:1084-7529
1520-8532
DOI:10.1364/JOSAA.30.001727