An Environmental-Economic Dispatch Method for Smart Microgrids Using VSSiQGA

The increasing penetration of distributed generation resources demands better economic performance of microgrids under the smart-grid era. In this paper, a comprehensive environmental-economic dispatch method for smart microgrids is proposed, with the objective for minimizing the summation of genera...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of applied mathematics 2014-01, Vol.2014
Hauptverfasser: Liu, Wenxia, Zhang, Yuying, Zeng, Bo, Niu, Shuya, Zhang, Jianhua, Xiao, Yong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The increasing penetration of distributed generation resources demands better economic performance of microgrids under the smart-grid era. In this paper, a comprehensive environmental-economic dispatch method for smart microgrids is proposed, with the objective for minimizing the summation of generation and emission costs in the system. As the proposed model belongs to a large-scale nonlinear and nonconvex programming problem, a hybrid heuristic algorithm, named variable step-size chaotic fuzzy quantum genetic algorithm (VSSiQGA), is developed. The algorithm utilizes complementarity among multiple techniques including the variable step size optimization, the rotation mutational angle fuzzy control, and the quantum genetic algorithm and combines them so as to solve problems with superior accuracy and efficiency. The effectiveness of the proposed model is demonstrated through a case study on an actual microgrid system and the advantages in the performance of VSSiQGA is also verified through the comparison with genetic algorithm (GA), the evolutionary programming approach (EP), the quantum genetic algorithm (QGA), and the chaotic quantum genetic algorithm (CQGA).
ISSN:1110-757X
1687-0042
DOI:10.1155/2014/623216