The 2-Lagrange Multiplier Method Applied to Nonlinear Transmission Problems for the Richards Equation in Heterogeneous Soil with Cross Points

We formulate the 2-Lagrange multiplier method for the Richards equation in heterogeneous soil. This allows a rigorous formulation of a discrete version of the Richards equation on subdomain decompositions involving cross points. Using Kirchhoff transformation, the individual subdomain problems can b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:SIAM journal on scientific computing 2014-01, Vol.36 (5), p.A2166-A2198
Hauptverfasser: Berninger, Heiko, Loisel, Sébastien, Sander, Oliver
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We formulate the 2-Lagrange multiplier method for the Richards equation in heterogeneous soil. This allows a rigorous formulation of a discrete version of the Richards equation on subdomain decompositions involving cross points. Using Kirchhoff transformation, the individual subdomain problems can be transformed into convex minimization problems and solved efficiently using a monotone multigrid method. We discuss and compare weak formulations of the time-discrete and fully discretized multidomain problem. It is shown that in the case of two subdomains, when solving the resulting discrete system with a Richardson iteration, the new method is equivalent to a parallel version of the nonlinear Robin method for the Richards equation proposed in [H. Berninger and O. Sander,Comput. Vis. Sci. , 13 (2010), pp. 187--205]. We give numerical results for a problem with realistic soil parameters.
ISSN:1064-8275
1095-7197
DOI:10.1137/120901064