Measuring topology in a laser-coupled honeycomb lattice: from Chern insulators to topological semi-metals

Ultracold fermions trapped in a honeycomb optical lattice constitute a versatile setup to experimentally realize the Haldane model (1988 Phys. Rev. Lett. 61 2015). In this system, a non-uniform synthetic magnetic flux can be engineered through laser-induced methods, explicitly breaking time-reversal...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:New journal of physics 2013-01, Vol.15 (1), p.13025-30
Hauptverfasser: Goldman, N, Anisimovas, E, Gerbier, F, Öhberg, P, Spielman, I B, Juzeli nas, G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Ultracold fermions trapped in a honeycomb optical lattice constitute a versatile setup to experimentally realize the Haldane model (1988 Phys. Rev. Lett. 61 2015). In this system, a non-uniform synthetic magnetic flux can be engineered through laser-induced methods, explicitly breaking time-reversal symmetry. This potentially opens a bulk gap in the energy spectrum, which is associated with a non-trivial topological order, i.e. a non-zero Chern number. In this paper, we consider the possibility of producing and identifying such a robust Chern insulator in the laser-coupled honeycomb lattice. We explore a large parameter space spanned by experimentally controllable parameters and obtain a variety of phase diagrams, clearly identifying the accessible topologically non-trivial regimes. We discuss the signatures of Chern insulators in cold-atom systems, considering available detection methods. We also highlight the existence of topological semi-metals in this system, which are gapless phases characterized by non-zero winding numbers, not present in Haldane's original model.
ISSN:1367-2630
1367-2630
DOI:10.1088/1367-2630/15/1/013025