Substitutes, complements, and ripples in multicommodity flows on suspension graphs

We examine in this article when it is possible to predict, without numerical computation, the direction of change of optimal multicommodity flows on suspension graphs resulting from changes in arc‐commodity parameters. Using results of Evans (Oper Res 26 (1978), 673–679) and of Soun and Truemper (SI...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Networks 2014-09, Vol.64 (2), p.65-75
Hauptverfasser: Ciurria-Infosino, Iara, Granot, Frieda, Veinott Jr, Arthur F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We examine in this article when it is possible to predict, without numerical computation, the direction of change of optimal multicommodity flows on suspension graphs resulting from changes in arc‐commodity parameters. Using results of Evans (Oper Res 26 (1978), 673–679) and of Soun and Truemper (SIAM J Algebr Discrete Meth 1 (1980), 348–358), the multicommodity flow problem on a graph that is two‐isomorphic to a suspension graph is reduced to a single‐commodity flow problem on an enlarged graph, called a “rolodex graph.” Such a reduction allows us to apply results of Granot and Veinott (Math Oper Res 10 (1985), 471–497), developed for single‐commodity network‐flow problems, to derive qualitative sensitivity analysis results for multicommodity flow problems on graphs which are two‐isomorphic to suspension graphs. © 2014 Wiley Periodicals, Inc. NETWORKS, Vol. 64(2), 65–75 2014
ISSN:0028-3045
1097-0037
DOI:10.1002/net.21557