Acidic mist reduces foliar membrane-associated calcium and impairs stomatal responsiveness in red spruce
Acidic deposition can leach essential pools of calcium (Ca) directly from plant foliage. Because of the central role of Ca in environmental signal transduction, disruptions of labile foliar Ca pools could impair physiological responses to a variety of environmental stimuli and stressors. We investig...
Gespeichert in:
Veröffentlicht in: | Tree physiology 2005-06, Vol.25 (6), p.673-680 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Acidic deposition can leach essential pools of calcium (Ca) directly from plant foliage. Because of the central role of Ca in environmental signal transduction, disruptions of labile foliar Ca pools could impair physiological responses to a variety of environmental stimuli and stressors. We investigated the possibility that acidic mist-induced depletion of membrane-associated Ca (mCa), which is one form of labile Ca, may alter stomatal responsiveness to water stress, a process known to include Ca in signal transduction cascades. Red spruce (Picea rubens Sarg.) seedlings were exposed to either pH 3.0 or pH 5.0 mist treatments for one growing season. Foliar nutrition was assessed following treatments, and declines in stomatal conductance and net photosynthesis were measured on current-year shoots following stem excision. Seedlings exposed to pH 3.0 acidic mist treatments had reduced mCa relative to the pH 5.0 treated seedlings. Seedlings subjected to the pH 3.0 acidic mist treatment exhibited impaired stomatal functions, including a smaller maximum aperture, slower closure and an increased lag time between stomatal closure and photosynthetic decline following experimental water stress. Delayed stomatal closure could undermine desiccation avoidance mechanisms. Previous work has demonstrated that acidic mist treatments deplete mCa in red spruce and impair cold tolerance, with similar effects in other species. The results we present provide further evidence that acidic mist-induced mCa depletion may cause disruption of a broad range of plant stress responses. |
---|---|
ISSN: | 0829-318X 1758-4469 |
DOI: | 10.1093/treephys/25.6.673 |