Thermally Induced Oxidative Decarboxylation of Copper Complexes of Amino Acids and Formation of Strecker Aldehyde

In the Maillard reaction, independent degradations of amino acids play an important role in the generation of amino-acid-specific products, such as Strecker aldehydes or their Schiff bases. Such oxidative decarboxylation reactions are expected to be enhanced in the presence of metals. Preliminary st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2014-08, Vol.62 (33), p.8518-8523
Hauptverfasser: Nashalian, Ossanna, Yaylayan, Varoujan A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the Maillard reaction, independent degradations of amino acids play an important role in the generation of amino-acid-specific products, such as Strecker aldehydes or their Schiff bases. Such oxidative decarboxylation reactions are expected to be enhanced in the presence of metals. Preliminary studies performed through heating of alanine and various metal salts (Cu, Fe, Zn, and Ca) under pyrolytic conditions indicated that copper(II) and iron(III) because of their high oxidation potentials were the only metals able to induce oxidative decarboxylation of amino acids and formation of Strecker aldehyde or its derivatives as detected by gas chromatography/mass spectrometry. Furthermore, studies performed with synthetic alanine and glycine copper complexes indicated that they constituted the critical intermediates undergoing free-radical oxidative degradation, followed by the loss of carbon dioxide and the generation of Strecker aldehydes, which were detected either as stable Schiff base adducts or incorporated in moieties, such as pyrazine or pyridine derivatives.
ISSN:0021-8561
1520-5118
DOI:10.1021/jf502751n