Modern and Historic Atmospheric Mercury Fluxes in Northern Alaska: Global Sources and Arctic Depletion
We reconstruct from lake-sediment archives atmospheric Hg deposition to Arctic Alaska over the last several centuries and constrain a contemporary lake/watershed mass-balance with real-time measurement of Hg fluxes in rainfall, runoff, and evasion. Results indicate that (a) anthropogenic Hg impact i...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2005-01, Vol.39 (2), p.557-568 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We reconstruct from lake-sediment archives atmospheric Hg deposition to Arctic Alaska over the last several centuries and constrain a contemporary lake/watershed mass-balance with real-time measurement of Hg fluxes in rainfall, runoff, and evasion. Results indicate that (a) anthropogenic Hg impact in the Arctic is of similar magnitude to that at temperate latitudes; (b) whole-lake Hg sedimentation determined from 55 210Pb-dated cores from the five small lakes demonstrates a 3-fold increase in atmospheric Hg deposition since the advent of the Industrial Revolution; (c) because of high soil Hg concentrations and relatively low atmospheric deposition fluxes, erosional inputs to these lakes are more significant than in similar temperate systems; (d) volatilization accounts for about 20% of the Hg losses (evasion and sedimentation); and (e) another source term is needed to balance the evasional and sedimentation sinks. This additional flux (1.21 ± 0.74 μg m-2 yr-1) is comparable to direct atmospheric Hg deposition and may be due to some combination of springtime Arctic depletion and more generalized deposition of reactive gaseous Hg species. |
---|---|
ISSN: | 0013-936X 1520-5851 |
DOI: | 10.1021/es049128x |