Demographic Models and Reality in Reintroductions: Persian Fallow Deer in Israel

Because most reintroduced species are rare, data on their dynamics are scarce. Consequently, reintroduction programs often rely on data from other species or captive populations to project the performance of the reintroduced population in the wild. We compared the reproductive success and survival o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Conservation biology 2005-02, Vol.19 (1), p.131-138
Hauptverfasser: BAR-DAVID, SHIRLI, SALTZ, DAVID, DAYAN, TAMAR, PERELBERG, AMIR, DOLEV, AMIT
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Because most reintroduced species are rare, data on their dynamics are scarce. Consequently, reintroduction programs often rely on data from other species or captive populations to project the performance of the reintroduced population in the wild. We compared the reproductive success and survival of a Persian fallow deer (Dama mesopotamica) population reintroduced in Israel over the first 5 years of the project with the survival and reproduction parameters estimated while planning the reintroduction. In addition, we compared the actual growth of the wild population with the growth originally projected by a computer model in the original reintroduction program. We monitored 74 radio-collared individuals (57 females and 17 males) released semiannually 1996-2001. Survival during the first year after release was lower than later years (0.90 and 0.82 versus 0.95 and 0.88, for females and males, respectively). Such an impact was not anticipated in the original plan, but overall survival was higher than originally projected. As assumed in the reintroduction program, reproductive success improved significantly with time since release and overall, was higher than expected. The mean number of animals released annually was lower than planned. Overall, the growth of the reintroduced population was slower than projected, but the deviation was close to confidence limits and the pattern similar. After 5 years it appears that the original time frame of 8-10 years for project completion can be met or at worst will cause a 1-year delay. Over the short term of 5 years, projection models in reintroduction programs are useful tools for assessing the sustained use of the breeding core, depicting the dynamics of the population in the wild, providing a relatively accurate time frame for the successful completion of the project, and assessing project success.
ISSN:0888-8892
1523-1739
DOI:10.1111/j.1523-1739.2005.00371.x