Effects of copper, cadmium and contaminated harbour sediments on recolonisation of soft-bottom communities
An extensive field experiment on benthic colonisation on polluted sediments was carried out at 50 m depth at three locations representative of the pollution gradient in the inner Oslofjord. The aim of the study was to investigate the effect of copper, cadmium and polluted harbour sediment on recolon...
Gespeichert in:
Veröffentlicht in: | Journal of experimental marine biology and ecology 2004-10, Vol.310 (1), p.87-114 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | An extensive field experiment on benthic colonisation on polluted sediments was carried out at 50 m depth at three locations representative of the pollution gradient in the inner Oslofjord. The aim of the study was to investigate the effect of copper, cadmium and polluted harbour sediment on recolonisation of benthic fauna, and whether the response varied with a varying degree of background pollution. Copper and cadmium were added to the local sediments at the three locations, while the contaminated harbour sediment was taken from the hypoxic Oslo harbour and transplanted to well-oxygenated and less-polluted locations. Oslo harbour has a poor macrofauna, the sediments are heavily contaminated and the oxygen levels in the bottom waters are low. One of the aims of this experiment was to separate effects of contamination from effects of low oxygen. Sediments with high levels of copper (∼400–1500 mg/kg) clearly had a negative effect on colonisation by several taxa. This negative response was more pronounced at the relatively pristine location in the outer fjord compared to the more polluted sites, probably as a result of an increased bioavailability of the metals in sediments with lower concentrations of organic carbon. Sediments with high levels of cadmium (∼9–23 mg/kg), on the other hand, did not have negative effects on colonisation of any taxa. In the boxes with polluted harbour sediments, only the polychaete
Raricirrus beryli showed reduced abundance. This lack of community response clearly indicates that hypoxia is more critical than high concentrations of contaminants for the establishment of a normal benthic fauna in the Oslo harbour area. The experiment only lasted for 6 months and the recolonising fauna was dominated by opportunistic and r-selected species. Long-term toxic effects may therefore have occurred if the experiment had lasted longer. The experiment also showed that the time for the development of a community resembling the ambient community was faster on the polluted than on the more pristine location. |
---|---|
ISSN: | 0022-0981 1879-1697 |
DOI: | 10.1016/j.jembe.2004.04.003 |