A mechanism for bimodal emission of gaseous mercury from aquatic macrophytes

We performed intensive sampling campaigns of Hg 0 fluxes over emergent macrophytes in the Florida Everglades to find a surrogate for Hg fluxes from water and vegetation to identify the mechanisms of emission. We measured daytime lacunal and sediment gas concentrations of Hg 0, which suggested that t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Atmospheric environment (1994) 2005-03, Vol.39 (7), p.1289-1301
Hauptverfasser: Lindberg, Steve E., Dong, Weijin, Chanton, Jeff, Qualls, Robert G., Meyers, Tilden
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We performed intensive sampling campaigns of Hg 0 fluxes over emergent macrophytes in the Florida Everglades to find a surrogate for Hg fluxes from water and vegetation to identify the mechanisms of emission. We measured daytime lacunal and sediment gas concentrations of Hg 0, which suggested that the lacunal space acts as temporary storage for Hg 0 and CH 4. The absence of detectable Hg 0 fluxes measured over uprooted (floating) plants and sediment incubation experiments suggest that the Hg 0 emitted from emergent macrophytes such as Typha and Cladium originates in the sediment. HgII in the rhizosphere is reduced to Hg 0 in these sediments by various processes, and is then transported by the plants to the atmosphere by two separate processes. At night, Hg 0 and CH 4 formed in the sediment accumulate in the lacunal space after crossing the root-sediment barrier. At sunrise, a form of pressurized through-flow purges the lacunal space of Typha into the atmosphere forming an early morning emission pulse for both gases, and coincidental peaks of CH 4 and Hg 0 suggest that the same lacunal gas transport mechanism is involved. Later in the day while the release of methane continues to deplete the lacunal pool, the Hg 0 flux increases again to form a second peak in the afternoon when the CH 4 emission has decreased. This peak parallels that of transpiration, and is presumably due to xylem transport of Hg 0 from continued production of Hg 0 in the rhizosphere, perhaps in response to release of root exudates. A mass balance for this ∼1500 ha wetland suggested that the total transpiration of Hg 0 is ∼1 kg yr −1, or ∼20 times the amount evaded from the water surface.
ISSN:1352-2310
1873-2844
DOI:10.1016/j.atmosenv.2004.11.006