The program for cellular differentiation in Volvox carteri as revealed by molecular analysis of development in a gonidialess/somatic regenerator mutant
Development of a âgonidialessâ/âsomatic regeneratorâ double mutant of Volvox carteri was analyzed with a number of cell-type-specific cDNA probes that had been identified in a previous study. Whereas in wild-type strains somatic cells and gonidia (asexual reproductive cells) constitute two d...
Gespeichert in:
Veröffentlicht in: | Development (Cambridge) 1991-06, Vol.112 (2), p.571-580 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Development of a âgonidialessâ/âsomatic regeneratorâ double mutant of Volvox carteri was analyzed with a number of cell-type-specific cDNA probes that had been identified in a previous study. Whereas in wild-type strains somatic cells and gonidia (asexual reproductive cells) constitute two distinct cell lineages, in this mutant all cells first differentiate as somatic cells and then redifferentiate as gonidia. During the initial period of somatic differentiation, we found that both gonidial and âearlyâ somatic transcripts were accumulated in the mutant, consistent with the idea that it is the regA gene product (which is defective in this mutant) that normally acts to suppress gonidial gene expression in somatic cells. Later in development, levels of early somatic transcripts fell abruptly, levels of the late somatic transcripts remained extremely low, and levels of gonidial transcripts rose as the cells redifferentiated. Thus it appears that in the mutant cells the gonidial program of development takes over and somatic differentiation is aborted before the stage at which late somatic genes are normally activated. These results provide molecular genetic support for a model which postulates that three types of genes (including the two that are defective in the strain studied here) are crucial for converting the sequential program of differentiation seen in more primitive volvocalean algae to the dichotomous program of germ-soma differentiation that occurs in wild-type V. carteri. |
---|---|
ISSN: | 0950-1991 1477-9129 |
DOI: | 10.1242/dev.112.2.571 |