Assimilating along-track SLA data using the EnOI in an eddy resolving model of the Agulhas system

The greater Agulhas Current is one of the most energetic current systems in the global ocean. It plays a fundamental role in determining the mean state and variability of the regional marine environment, affecting its resources and ecosystem, the regional weather and the global climate on a broad ra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ocean dynamics 2014-08, Vol.64 (8), p.1121-1136
Hauptverfasser: Backeberg, Björn C., Counillon, François, Johannessen, Johnny A., Pujol, Marie–Isabelle
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The greater Agulhas Current is one of the most energetic current systems in the global ocean. It plays a fundamental role in determining the mean state and variability of the regional marine environment, affecting its resources and ecosystem, the regional weather and the global climate on a broad range of temporal and spatial scales. In the absence of a coherent in-situ and satellite-based observing system in the region, modelling and data assimilation techniques play a crucial role in both furthering the quantitative understanding and providing better forecasts of this complicated western boundary current system. In this study, we use a regional implementation of the Hybrid Coordinate Ocean Model and assimilate along-track satellite sea level anomaly (SLA) data using the Ensemble Optimal Interpolation (EnOI) data assimilation scheme. This study lays the foundation towards the development of a regional prediction system for the greater Agulhas Current system. Comparisons to independent in-situ drifter observations show that data assimilation reduces the error compared to a free model run over a 2-year period. Mesoscale features are placed in more consistent agreement with the drifter trajectories and surface velocity errors are reduced. While the model-based forecasts of surface velocities are not as accurate as persistence forecasts derived from satellite altimeter observations, the error calculated from the drifter measurements for eddy kinetic energy is significantly lower in the assimilation system compared to the persistence forecast. While the assimilation of along-track SLA data introduces a small bias in sea surface temperatures, the representation of water mass properties and deep current velocities in the Agulhas system is improved.
ISSN:1616-7341
1616-7228
DOI:10.1007/s10236-014-0717-6