Formation of crownlike and related nanostructures on thin supported gold films irradiated by single diffraction-limited nanosecond laser pulses

A type of laser-induced surface relief nanostructure-the nanocrown-on thin metallic films was studied both experimentally and theoretically. The nanocrowns, representing a thin corrugated rim of resolidified melt and resembling well-known impact-induced water-crown splashes, were produced by single...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2014-08, Vol.90 (2), p.023017-023017, Article 023017
Hauptverfasser: Kulchin, Yu N, Vitrik, O B, Kuchmizhak, A A, Emel'yanov, V I, Ionin, A A, Kudryashov, S I, Makarov, S V
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A type of laser-induced surface relief nanostructure-the nanocrown-on thin metallic films was studied both experimentally and theoretically. The nanocrowns, representing a thin corrugated rim of resolidified melt and resembling well-known impact-induced water-crown splashes, were produced by single diffraction-limited nanosecond laser pulses on thin gold films of variable thickness on low-melting copper and high-melting tungsten substrates, providing different transient melting and adhesion conditions for these films. The proposed model of the nanocrown formation, based on a hydrodynamical (thermocapillary Marangoni) surface instability and described by a Kuramoto-Sivashinsky equation, envisions key steps of the nanocrown appearance and gives qualitative predictions of the acquired nanocrown parameters.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.90.023017