Formation of crownlike and related nanostructures on thin supported gold films irradiated by single diffraction-limited nanosecond laser pulses
A type of laser-induced surface relief nanostructure-the nanocrown-on thin metallic films was studied both experimentally and theoretically. The nanocrowns, representing a thin corrugated rim of resolidified melt and resembling well-known impact-induced water-crown splashes, were produced by single...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2014-08, Vol.90 (2), p.023017-023017, Article 023017 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | A type of laser-induced surface relief nanostructure-the nanocrown-on thin metallic films was studied both experimentally and theoretically. The nanocrowns, representing a thin corrugated rim of resolidified melt and resembling well-known impact-induced water-crown splashes, were produced by single diffraction-limited nanosecond laser pulses on thin gold films of variable thickness on low-melting copper and high-melting tungsten substrates, providing different transient melting and adhesion conditions for these films. The proposed model of the nanocrown formation, based on a hydrodynamical (thermocapillary Marangoni) surface instability and described by a Kuramoto-Sivashinsky equation, envisions key steps of the nanocrown appearance and gives qualitative predictions of the acquired nanocrown parameters. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.90.023017 |