Spectral properties and dynamical tunneling in constant-width billiards

We determine with unprecedented accuracy the lowest 900 eigenvalues of two quantum constant-width billiards from resonance spectra measured with flat, superconducting microwave resonators. While the classical dynamics of the constant-width billiards is unidirectional, a change of the direction of mo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2014-08, Vol.90 (2), p.022903-022903, Article 022903
Hauptverfasser: Dietz, B, Guhr, T, Gutkin, B, Miski-Oglu, M, Richter, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We determine with unprecedented accuracy the lowest 900 eigenvalues of two quantum constant-width billiards from resonance spectra measured with flat, superconducting microwave resonators. While the classical dynamics of the constant-width billiards is unidirectional, a change of the direction of motion is possible in the corresponding quantum system via dynamical tunneling. This becomes manifest in a splitting of the vast majority of resonances into doublets of nearly degenerate ones. The fluctuation properties of the two respective spectra are demonstrated to coincide with those of a random-matrix model for systems with violated time-reversal invariance and a mixed dynamics. Furthermore, we investigate tunneling in terms of the splittings of the doublet partners. On the basis of the random-matrix model we derive an analytical expression for the splitting distribution which is generally applicable to systems exhibiting dynamical tunneling between two regions with (predominantly) chaotic dynamics.
ISSN:1539-3755
1550-2376
DOI:10.1103/PhysRevE.90.022903