Spectral properties and dynamical tunneling in constant-width billiards
We determine with unprecedented accuracy the lowest 900 eigenvalues of two quantum constant-width billiards from resonance spectra measured with flat, superconducting microwave resonators. While the classical dynamics of the constant-width billiards is unidirectional, a change of the direction of mo...
Gespeichert in:
Veröffentlicht in: | Physical review. E, Statistical, nonlinear, and soft matter physics Statistical, nonlinear, and soft matter physics, 2014-08, Vol.90 (2), p.022903-022903, Article 022903 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We determine with unprecedented accuracy the lowest 900 eigenvalues of two quantum constant-width billiards from resonance spectra measured with flat, superconducting microwave resonators. While the classical dynamics of the constant-width billiards is unidirectional, a change of the direction of motion is possible in the corresponding quantum system via dynamical tunneling. This becomes manifest in a splitting of the vast majority of resonances into doublets of nearly degenerate ones. The fluctuation properties of the two respective spectra are demonstrated to coincide with those of a random-matrix model for systems with violated time-reversal invariance and a mixed dynamics. Furthermore, we investigate tunneling in terms of the splittings of the doublet partners. On the basis of the random-matrix model we derive an analytical expression for the splitting distribution which is generally applicable to systems exhibiting dynamical tunneling between two regions with (predominantly) chaotic dynamics. |
---|---|
ISSN: | 1539-3755 1550-2376 |
DOI: | 10.1103/PhysRevE.90.022903 |