Land application of biosolids. Soil response to different stabilization degree of the treated organic matter
The effect of land application of biosolids on an agricultural soil was studied in a 2-month incubation experiment. The soil microbial biomass and the availability of heavy metals in the soil was monitored after the application of four different composting mixtures of sewage sludge and cotton waste,...
Gespeichert in:
Veröffentlicht in: | Waste management (Elmsford) 2004, Vol.24 (4), p.325-332 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The effect of land application of biosolids on an agricultural soil was studied in a 2-month incubation experiment. The soil microbial biomass and the availability of heavy metals in the soil was monitored after the application of four different composting mixtures of sewage sludge and cotton waste, at different stages of composting. Land application caused an increase of both size and activity of soil microbial biomass that was related to the stabilization degree of the composting mixture. Sewage sludge stabilization through composting reduced the perturbance of the soil microbial biomass. At the end of the experiment, the size and the activity of the soil microbial biomass following the addition of untreated sewage sludge were twice those developed with mature compost. For the mature compost, the soil microbial biomass recovered its original equilibrium status (defined as the specific respiration activity, qCO
2) after 18 days of incubation, whereas the soil amended with less stabilized materials did not recover equilibrium even after the two-month incubation period. The stabilization degree of the added materials did not affect the availability of Zn, Ni, Pb, Cu, Cr and Cd in the soil in the low heavy metal content of the sewage sludge studied. Stabilization of organic wastes before soil application is advisable for the lower perturbation of soil equilibria status and the more efficient C mineralization. |
---|---|
ISSN: | 0956-053X 1879-2456 |
DOI: | 10.1016/j.wasman.2003.08.006 |