Arsenic and other elements in hair, nails, and skin-scales of arsenic victims in West Bengal, India
For the first time, biological tissues (hair, nails, and skin-scales) of arsenic victims from an arsenic affected area of West Bengal (WB), India were analyzed for trace elements. Analysis was carried out by inductively coupled plasma-mass spectrometry (ICP-MS) for 10 elements (As, Se, Hg, Zn, Pb, N...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2004-06, Vol.326 (1), p.33-47 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For the first time, biological tissues (hair, nails, and skin-scales) of arsenic victims from an arsenic affected area of West Bengal (WB), India were analyzed for trace elements. Analysis was carried out by inductively coupled plasma-mass spectrometry (ICP-MS) for 10 elements (As, Se, Hg, Zn, Pb, Ni, Cd, Mn, Cu, and Fe). A microwave digester was used for digestion of the tissue samples. To validate the method, certified reference materials—human hair (GBW 07601) and bovine muscle (CRM 8414)—were analyzed for all elements. The
W test was used to study the normal/log normal distribution for each element in the tissue samples. For hair (
n=44) and nails (
n=33), all elements show log–normal distribution. For skin-scale samples (
n=11), data are not sufficient to provide the information about the trend. Geometric mean, standard error, and range for each element were presented and compared with literature values for other populations. This study reveals the higher levels of toxic elements As, Mn, Pb, and Ni in the tissue samples compared with available values in the literature. The elevated levels of these toxic metals in the tissues may be due to exposure of these elements through drinking water and food. The correlations of Mn and Ni with other essential elements, e.g. Fe, Cu, Zn, suggest that Mn and Ni may substitute for those elements in hair, nails, and skin-scales. However, correlation represents the relation between two elements only and does not take into consideration of the presence of other elements. Principle component analysis was applied to explain the behavior among the elements present in hair and nails. This study reveals that in the arsenic-affected areas of WB, the concentrations of other toxic elements in drinking water and foodstuff should be monitored to evaluate the arsenic poisoning. |
---|---|
ISSN: | 0048-9697 1879-1026 |
DOI: | 10.1016/j.scitotenv.2003.12.006 |