Out-of-sample density forecasts with affine jump diffusion models
•We conduct density forecast evaluations of the affine jump diffusion models.•We use the S&P 500 stock index and its options contracts.•Our results support the time-varying jump risk premia models.•The options’ information improves density forecasting ability.•Beta transformation is used for den...
Gespeichert in:
Veröffentlicht in: | Journal of banking & finance 2014-10, Vol.47, p.74-87 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | •We conduct density forecast evaluations of the affine jump diffusion models.•We use the S&P 500 stock index and its options contracts.•Our results support the time-varying jump risk premia models.•The options’ information improves density forecasting ability.•Beta transformation is used for density parameter updating.
We conduct out-of-sample density forecast evaluations of the affine jump diffusion models for the S&P 500 stock index and its options’ contracts. We also examine the time-series consistency between the model-implied spot volatilities using options & returns and only returns. In particular, we focus on the role of the time-varying jump risk premia. Particle filters are used to estimate the model-implied spot volatilities. We also propose the beta transformation approach for recursive parameter updating. Our empirical analysis shows that the inconsistencies between options & returns and only returns are resolved by the introduction of the time-varying jump risk premia. For density forecasts, the time-varying jump risk premia models dominate the other models in terms of likelihood criteria. We also find that for medium-term horizons, the beta transformation can weaken the systematic effect of misspecified AJD models using options & returns. |
---|---|
ISSN: | 0378-4266 1872-6372 |
DOI: | 10.1016/j.jbankfin.2014.06.024 |