Groundwater arsenic in the Verde Valley in central Arizona, USA

Forty-one water samples were collected and analyzed from throughout the Verde Valley watershed to identify the source of As in well water used for domestic and agricultural purposes. Each water sample was analyzed for anions, cations and trace chemical constituents by atomic absorption spectroscopy,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied geochemistry 2004-02, Vol.19 (2), p.251-255
Hauptverfasser: Foust, R.D, Mohapatra, P, Compton-O'Brien, A.-M, Reifel, J
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Forty-one water samples were collected and analyzed from throughout the Verde Valley watershed to identify the source of As in well water used for domestic and agricultural purposes. Each water sample was analyzed for anions, cations and trace chemical constituents by atomic absorption spectroscopy, anion chromatography and traditional wet chemical procedures. Arsenic concentrations ranged from 10 to 210 μg/l, with the highest values observed for water pooled on tailings from an abandoned Cu mine. Geostatistical analysis of the data revealed the primary source of As to be groundwater in contact with the Supai and Verde formations, as opposed to runoff from the abandoned mine tailings. Montezuma Well, a collapsed travertine spring, contained the highest levels of naturally occurring As (> 100 μg/l). Arsenic in Montezuma Well water was shown to be 100% arsenate. X-ray absorbance near edge spectra (XANES) of Potomogeton illinoiensis, an endemic plant species of Montezuma Well, demonstrate that As is absorbed as arsenate, reduced to arsenite in the plant and retained as an organic glutathione complex. XANES spectra of Montezuma Well sediments show 4 forms of As present: arsenate (∼54%), As(III)-glutathione complex (∼32%) and an As-organic complex (∼14%) containing dimethylarsinic acid and arsenobetaine. This is the first report of As(III)-glutathione in sediments.
ISSN:0883-2927
1872-9134
DOI:10.1016/j.apgeochem.2003.09.011