B Chromosomes in the Grasshopper Eyprepocnemis plorans Are Present in All Body Parts Analyzed and Show Extensive Variation for rDNA Copy Number

B chromosomes in the grasshopper Eyprepocnemis plorans are considered to be mitotically stable, because all meiotic (primary spermatocytes and oocytes) or mitotic (embryos, ovarioles, and gastric caecum) cells analyzed within the same individual show the same B chromosome number. Nothing is known, h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cytogenetic and genome research 2014-01, Vol.143 (4), p.268-274
Hauptverfasser: Ruiz-Estévez, Mercedes, Cabrero, Josefa, Camacho, Juan Pedro M., López-León, María Dolores
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:B chromosomes in the grasshopper Eyprepocnemis plorans are considered to be mitotically stable, because all meiotic (primary spermatocytes and oocytes) or mitotic (embryos, ovarioles, and gastric caecum) cells analyzed within the same individual show the same B chromosome number. Nothing is known, however, about body parts with somatic tissues with no mitotic activity in adult individuals, constituting the immense majority of their body. Therefore, we investigated whether B chromosomes are present in 8 non-mitotically active somatic body parts from both sexes in addition to ovarioles and testes by PCR analysis of 2 B-specific molecular markers. We also elucidated the number of B chromosomes that an individual carried through quantifying the B-located rDNA copy number by qPCR. Our results indicated the amplification of both B-specific markers in all analyzed body parts. However, we found high variation between males for the estimated number of rDNA units in the B chromosomes. These results demonstrate the presence of B chromosomes in all body parts from the same individual and suggest a high variation in the rDNA content of the B chromosomes carried by different individuals from the same population, presumably due to unequal crossovers during meiosis.
ISSN:1424-8581
1424-859X
DOI:10.1159/000365797