Dimensional and elemental characterization of suspended particulate matter in natural waters: quantitative aspects in the integrated ultrafiltration, splitt-flow thin cell and inductively coupled plasma–atomic emission spectrometry approach
The present study investigates the quantitative aspects of an analytical procedure for the trace element characterization of suspended particulate matter (SPM) in natural waters. The procedure consists of the following steps: (1) ultrafiltration (UF) concentration; (2) splitt-flow thin (SPLITT) cell...
Gespeichert in:
Veröffentlicht in: | Analytica chimica acta 2002-10, Vol.470 (2), p.253-262 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | The present study investigates the quantitative aspects of an analytical procedure for the trace element characterization of suspended particulate matter (SPM) in natural waters. The procedure consists of the following steps: (1) ultrafiltration (UF) concentration; (2) splitt-flow thin (SPLITT) cell fractionation (SF) into different micronic–submicronic dimensional ranges; and (3) inductively coupled plasma–atomic emission spectrometry (ICP–AES) elemental determination on both the separated fractions and the bulk phase. One specific feature of the UF/SF steps is that they are gentle and thus preserve the complexity of the colloidal features of SPM samples as far as possible. The investigation was performed on a real SPM sample (Po River, Italy). Two SF modes were considered: the so called conventional SPLITT fractionation (CSF) mode and the full feed depletion SPLITT fractionation (FFDSF) mode. These differ in terms of resolution, time (both better in CSF as compared to FFDSF) and operating mode (FFDSF does not require a diluting carrier). Quantitative aspects of the UF step recovery and of the CSF and FFDSF modes were investigated in terms of total mass balance proving that only the FFDSF mode is currently satisfactory for quantitative purposes. Mass balance versus the following elements: Cd, Cr, Cu, Mn, Ni and Pb, was performed using ICP–AES over the 0.2–1.5 and 1.5–20
μm FFDSF SPM fractions, proving that the analytical procedure based on UF/FFDSF/ICP–AES is consistent and useful in the investigation of trace element distribution in different SPM dimensional ranges versus that of the bulk phase. The relevance of aggregation–solubility equilibria concerning colloids of SPM phase is emphasized and further improvement of the procedure is discussed. |
---|---|
ISSN: | 0003-2670 1873-4324 |
DOI: | 10.1016/S0003-2670(02)00718-3 |