Control of scale formation in reverse osmosis by membrane rotation

Scale formation of soluble salts is one of the major factors limiting the application of reverse osmosis (RO) membranes. In this study, rotating RO, which takes advantage of Taylor-Couette flow instabilities to reduce concentration polarization and membrane fouling, was investigated as a novel metho...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Desalination 2003-06, Vol.155 (2), p.131-139
Hauptverfasser: Lee, Sangho, Lueptow, Richard M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Scale formation of soluble salts is one of the major factors limiting the application of reverse osmosis (RO) membranes. In this study, rotating RO, which takes advantage of Taylor-Couette flow instabilities to reduce concentration polarization and membrane fouling, was investigated as a novel method to control CaSO 4 scale formation. The permeate flux for rotating RO at ω = 180 rpm remains constant up to a volume concentration factor (VCF) of 4.2, while the permeate flux declines steadily with increasing VCF for no rotation. This is probably because vortices in rotating RO induce bulk crystallization and prevent scale particle deposition on the membrane surface. The anti-scaling effect in rotating RO increases with increasing rotational speed and depends to some extent on transmembrane pressure.
ISSN:0011-9164
1873-4464
DOI:10.1016/S0011-9164(03)00290-X