Lithium–antimony–lead liquid metal battery for grid-level energy storage

All-liquid batteries comprising a lithium negative electrode and an antimony–lead positive electrode have a higher current density and a longer cycle life than conventional batteries, can be more easily used to make large-scale storage systems, and so potentially present a low-cost means of grid-lev...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature (London) 2014-10, Vol.514 (7522), p.348-350
Hauptverfasser: Wang, Kangli, Jiang, Kai, Chung, Brice, Ouchi, Takanari, Burke, Paul J., Boysen, Dane A., Bradwell, David J., Kim, Hojong, Muecke, Ulrich, Sadoway, Donald R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:All-liquid batteries comprising a lithium negative electrode and an antimony–lead positive electrode have a higher current density and a longer cycle life than conventional batteries, can be more easily used to make large-scale storage systems, and so potentially present a low-cost means of grid-level energy storage. Liquid battery engineering The integration of batteries into the electric grid is seen as possible means of regulating energy supply from intermittent sources such as wind or solar, but today's battery technologies are too expensive to do the job. An all-liquid battery, comprising a liquid negative electrode, a molten salt electrolyte, and a liquid positive electrode, is one of the technologies being investigated for this role. Here Kangli Wang and colleagues describe a new variant of the concept — an all-liquid Li||Sb–Pb battery — that, through careful choice and alloying of the component electrode materials, reduces operating temperatures and hence potential cost while retaining desirable performance characteristics. The ability to store energy on the electric grid would greatly improve its efficiency and reliability while enabling the integration of intermittent renewable energy technologies (such as wind and solar) into baseload supply 1 , 2 , 3 , 4 . Batteries have long been considered strong candidate solutions owing to their small spatial footprint, mechanical simplicity and flexibility in siting. However, the barrier to widespread adoption of batteries is their high cost. Here we describe a lithium–antimony–lead liquid metal battery that potentially meets the performance specifications for stationary energy storage applications. This Li||Sb–Pb battery comprises a liquid lithium negative electrode, a molten salt electrolyte, and a liquid antimony–lead alloy positive electrode, which self-segregate by density into three distinct layers owing to the immiscibility of the contiguous salt and metal phases. The all-liquid construction confers the advantages of higher current density, longer cycle life and simpler manufacturing of large-scale storage systems (because no membranes or separators are involved) relative to those of conventional batteries 5 , 6 . At charge–discharge current densities of 275 milliamperes per square centimetre, the cells cycled at 450 degrees Celsius with 98 per cent Coulombic efficiency and 73 per cent round-trip energy efficiency. To provide evidence of their high power capability, the cells were discharged and cha
ISSN:0028-0836
1476-4687
DOI:10.1038/nature13700