Spatiotemporal multi-resolution approximation of the Amari type neural field model
Neural fields are spatially continuous state variables described by integro-differential equations, which are well suited to describe the spatiotemporal evolution of cortical activations on multiple scales. Here we develop a multi-resolution approximation (MRA) framework for the integro-difference e...
Gespeichert in:
Veröffentlicht in: | NeuroImage (Orlando, Fla.) Fla.), 2013-02, Vol.66, p.88-102 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Neural fields are spatially continuous state variables described by integro-differential equations, which are well suited to describe the spatiotemporal evolution of cortical activations on multiple scales. Here we develop a multi-resolution approximation (MRA) framework for the integro-difference equation (IDE) neural field model based on semi-orthogonal cardinal B-spline wavelets. In this way, a flexible framework is created, whereby both macroscopic and microscopic behavior of the system can be represented simultaneously. State and parameter estimation is performed using the expectation maximization (EM) algorithm. A synthetic example is provided to demonstrate the framework.
► We derive a multi-resolution estimator of continuum neural field parameters. ► The Macroscopic and microscopic dynamics of the system can be shown simultaneously. ► We show how to infer an arbitrary shaped intracortical connectivity kernel from data. |
---|---|
ISSN: | 1053-8119 1095-9572 |
DOI: | 10.1016/j.neuroimage.2012.10.039 |