Spatiotemporal multi-resolution approximation of the Amari type neural field model

Neural fields are spatially continuous state variables described by integro-differential equations, which are well suited to describe the spatiotemporal evolution of cortical activations on multiple scales. Here we develop a multi-resolution approximation (MRA) framework for the integro-difference e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2013-02, Vol.66, p.88-102
Hauptverfasser: Aram, P., Freestone, D.R., Dewar, M., Scerri, K., Jirsa, V., Grayden, D.B., Kadirkamanathan, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Neural fields are spatially continuous state variables described by integro-differential equations, which are well suited to describe the spatiotemporal evolution of cortical activations on multiple scales. Here we develop a multi-resolution approximation (MRA) framework for the integro-difference equation (IDE) neural field model based on semi-orthogonal cardinal B-spline wavelets. In this way, a flexible framework is created, whereby both macroscopic and microscopic behavior of the system can be represented simultaneously. State and parameter estimation is performed using the expectation maximization (EM) algorithm. A synthetic example is provided to demonstrate the framework. ► We derive a multi-resolution estimator of continuum neural field parameters. ► The Macroscopic and microscopic dynamics of the system can be shown simultaneously. ► We show how to infer an arbitrary shaped intracortical connectivity kernel from data.
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2012.10.039