Mapping the hand, foot and face representations in the primary motor cortex — Retest reliability of neuronavigated TMS versus functional MRI

Functional magnetic resonance imaging (fMRI) is a frequently used non-invasive mapping technique for investigating the human motor system. Recently, neuronavigated transcranial magnetic stimulation (nTMS) has been established as an alternative approach. We here compared the test–retest reliability o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NeuroImage (Orlando, Fla.) Fla.), 2013-02, Vol.66, p.531-542
Hauptverfasser: Weiss, Carolin, Nettekoven, Charlotte, Rehme, Anne K., Neuschmelting, Volker, Eisenbeis, Andrea, Goldbrunner, Roland, Grefkes, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Functional magnetic resonance imaging (fMRI) is a frequently used non-invasive mapping technique for investigating the human motor system. Recently, neuronavigated transcranial magnetic stimulation (nTMS) has been established as an alternative approach. We here compared the test–retest reliability of both mapping techniques with regard to the cortical representations of the hand, leg, face and tongue areas. Ten healthy subjects were examined three times (intervals: 3–5days/21–35days) with fMRI and nTMS. Motor-evoked potentials were recorded from the abductor pollicis brevis, plantaris, mentalis and the tongue muscles. The same muscles were activated in an fMRI motor task. Euclidean distances (ED) between hotspots and centers of gravity (CoG) were computed for the respective somatotopic representations. Furthermore, spatial reliability was tested by intersession overlap volumes (OV) and voxel-wise intraclass correlations (ICC). Feasibility of fMRI was 100% for all body parts and sessions. In contrast, nTMS was feasible in all sessions and subjects only for the hand area, while mappings of the foot (90%), face (70%) and tongue representations (40%) remained incomplete in several subjects due to technical constraints and co-stimulation artifacts. On average, the mean ED of the hotspots was better for fMRI (6.2±1.1mm) compared to nTMS (10.8±1.9mm) while stability of CoG was similar for both methods. Peak voxel reliability (ICC) was high for both methods (>0.8), and there was no influence of inter-session intervals. In contrast, the reliability of mapping the spatial extent of the hand, foot, lips and tongue representations was poor to moderate for both fMRI and nTMS (OVs and ICC
ISSN:1053-8119
1095-9572
DOI:10.1016/j.neuroimage.2012.10.046