CONSISTENCY AND ASYMPTOTIC NORMALITY OF SIEVE ML ESTIMATORS UNDER LOW-LEVEL CONDITIONS

This paper considers sieve maximum likelihood estimation of seminonparametric (SNP) models with an unknown density function as non-Euclidean parameter, next to a finite-dimensional parameter vector. The density function involved is modeled via an infinite series expansion, so that the actual paramet...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Econometric theory 2014-10, Vol.30 (5), p.1021-1076
1. Verfasser: Bierens, Herman J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper considers sieve maximum likelihood estimation of seminonparametric (SNP) models with an unknown density function as non-Euclidean parameter, next to a finite-dimensional parameter vector. The density function involved is modeled via an infinite series expansion, so that the actual parameter space is infinite-dimensional. It will be shown that under low-level conditions the sieve estimators of these parameters are consistent, and the estimators of the Euclidean parameters are $\sqrt N$ asymptotically normal, given a random sample of size N. The latter result is derived in a different way than in the sieve estimation literature. It appears that this asymptotic normality result is in essence the same as for the finite dimensional case. This approach is motivated and illustrated by an SNP discrete choice model.
ISSN:0266-4666
1469-4360
DOI:10.1017/S0266466614000036